Developing Consistent and Modular
Software Models with Ontologies

Robert Hoehndorf Axel-Cyrille Ngonga Ngomd Heinrich Herres

a |nstitute for Medical Informatics, Satistics and Epidemiology, University of Leipzig
and Department of Computer Science, University of Leipzig and Department of
Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology
b Department of Computer Science, University of Leipzig
¢ Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

Abstract. The development and verification of software models that aplicep
ble across multiple domains remains a difficult problem. We psep@novel ap-
proach to model-driven software development based on onés@nd Semantic
Web technology. Our approach uses three ontologies to defiitware models: a
task ontology, a domain ontology and a top-level ontologg fEsk ontology serves
as the conceptual model for the software, the domain ontologyiges domain-
specific knowledge and the top-level ontology integratestéisk and domain on-
tologies. Our method allows the verification of these modeth far consistency
and ontological adequacy. This verification can be perforbwt at development
and runtime. Domain ontologies are replaceable modules, vémables the com-
parison and application of the models built using our methadsacmultiple do-
mains. We demonstrate the viability of our approach throughdésign and im-
plementation of a semantic wiki and a social tagging systemcanpare it with
model-driven software development to illustrate its benefits

Keywords. Software engineering, formal ontology, ontology-drivesida

1. Introduction

Current approaches to software development target at rmoduld reusable software.
The development of such software requires both an undelis@of the tasks that the
software is supposed to perform and knowledge about the idamehich the software
is applied. Software models provide a means for specifyiege characteristics. They
require a method both for making domain knowledge explind &or integrating the
domain knowledge with the conceptual model of the softw@uarent approaches to
software are limited in this regard, as they are unable tarse@ conceptual and domain
models. Therefore, software implemented using currentagmhes to software devel-
opment can not be ported between domains without alterieig tonceptual model and
consequently the whole software model.

We propose a method for developing software based on thaatiens of three dif-
ferent kinds of ontologies: the conceptual model of thevgafé called theask ontol-
ogy, a domain ontology and atop-level ontology. The task ontology is an ontology for
the problem domain, i.e., the problem that the softwaretenithed to solve. The domain

ontology provides domain-specific knowledge for use by tifaxare. The software can
use the domain ontology to verify the ontological adequddh®data it processes. The
top-level ontology integrates these ontologies and allfmwsnformation flow between
them. It also provides a means for integrating data fronediffit domains.

We demonstrate the viability of this method with two casel&s: creating a se-
mantic wiki that guides users within a domain to enter cdark@owledge and creating
a collaborative tagging system that recognizes the typésgofed objects and adapts to
them. We provide a comparison with model-driven softwaigiregering and present the
advantages of our approach.

2. Background
2.1. Ontological foundations of conceptual modelling

Conceptual modelling is concerned with the identificatenmalysis, design and descrip-
tion of both concepts and relations that are related to samn®adh of interest. This in-
formation is specified in a modelling language based on afseteta-concepts form-
ing the meta-model. Usually, conceptual modelling lang@sagnd the conceptual sys-
tems designed in these frameworks are evaluated basediosubeessful application,
whereas the underlying meta-models are not further andlgre evaluated. An onto-
logical foundation of conceptual modelling goes a stephiertit aims at a semantic re-
duction of the conceptual systems to a top-level ontologyiemextensions in a princi-
pled way [1]. Ontologies, and in particular top-level oogiks, are rooted in methods of
philosophy, logic and artificial intelligence, and theyyide a framework for conceptual
modelling [2].

Top-level ontologies can be used to evaluate the corresfes conceptual model,
but also to develop guidelines for designing conceptual etsodn recent years, these
problems were studied by several authors [2—4]. The apprpezsented here takes ad-
ditional steps towards establishing the role of ontologig¢ke design of both conceptual
models and software systems.

2.2. Ontology

In computer science, an ontology refers to an explicit Spation of a conceptualization
of a domain [5]. A conceptualization contains the basic gates and relations used
in a language to describe a domain. An ontology specifiesrifemsion of these basic
categories and relations through a set of conditions, waiehpresented as axioms in
some formalism. Based on their generality and scope, diffelypes of ontologies can
be distinguished: top-level, core and domain ontologies.

A top-level ontology contains categories relevant to exEmain of reality [6]. Ex-
amples of these categories &mcess, Object or Category. Several top-level ontologies
are available for use, like the Descriptive Ontology for duistic and Cognitive Engi-
neering (DOLCE) [7] or the General Formal Ontology (GFO). [Bach possesses dif-
ferent features that determine their suitability for diffiet applications. The examples
presented here are based on the GFO.

GFO is a top-level ontology integrating objects and proeeg§]. It is a layered
ontology [8] that includes a theory of higher-order catégmrThese allow statements

about categories and the interrelations between them tedegtad, i.e., categories can be
treated as the objects of a domain. The GFO also employs &catdgorical approach,
distinguishing between universals, concepts and symbals [

A core ontology [10] formally describes the basic categoréthin a domain. It
makes the nature of a domain precise. At least two views oa gotologies must be
distinguished. The first assumes that a core ontology amnthe most general categories
with respect to a taxonomy on a domain. These categoriesadipedhe categories of a
top-level ontology. The second view assumes that a cordamytds a formal theory of
the central or principal categories within a domain andrtberivations. These central
categories and their derivations describe what the dorsabaut.

A domain ontology contains domain-specific types, relaiand constraints. They
can be founded in a top-level or a core ontology. An exampla dbmain ontology is
the Pizza Ontology

3. A method for ontology-based softwar e engineering

In this section, we illustrate a method for developing safevsystems based on ontolo-
gies. This method uses three ontologies to define softwadelsioa task ontology, a
domain ontology and a top-level ontology. The task ontoleggves as the conceptual
model for the software, the domain ontology provides dorspiecific knowledge and
the top-level ontology integrates the task and domain ogiesk.

We use the simple example of an ontology editor throughasisction to illustrate
our method. The ontology editor can be used to create oritalbgategories and rela-
tions between these categories. The relations can havéigagr number of arguments.
Every category can have instances.

3.1. Three ontology method

Our method is based on ontological foundations of concéphaalelling for software
engineering [2] and Semantic Web technology. In order tdwapand formalize the
meaning [11] of the conceptual model, i.e., to make its agiclal commitment explicit,
we argue for the use of ontologies as part of software modélen, software that is
based on these models can access its own ontological coranitRecent achievements
in Semantic Web technology, in particular libraries for RRd OWL [12,13], as well
as expressive and feature-rich description logic reasdiér, 15], make the realization
of this goal possible.

The method we propose consists of three steps. First, afoggts created as the
conceptual model for the software. For this step, the resiltesearch on ontological
foundations of conceptual modelling can be employed, ergglogical foundations for
UML [16]. Consequently, developing a shopping softwaraiiess the creation of an on-
tology for the shopping domain, developing a wiki requiresgild ontology, developing
a tagging software requires a tagging ontology, and so orcalV¢he resulting ontology

Lhttp://www.co-ode.org/ontologies/pizza/
2http://librdf.org

founded-in Top-level ontology founded-in

information flow

Conceptual model Domain ontologies

Figure 1. Three-ontology method: conceptual model, core or domain ogychnd the top-level ontology in-
tegrating both. The domain ontology provides domain-spekifawledge and the top-level ontology provides
a means for allowing information flow between the domain ontplagd the conceptual model.

the task ontology®*. Second, a top-level ontology is used as the foundationh@task
ontology. The foundation can be established using a methaoutological reduction and
mapping [1, 18]. Third, a domain ontology, founded in the same tol@ntology as
the task ontology, is used to provide domain-specific kndgdethat is used within the
software. Figure 1 illustrates the interactions betweeseélontologies. The software im-
plementing this method uses the task and the top-level agits to specify an interface
for using entities from domain ontologies. Therefore, donwentologies are replaceable
modules in this architecture.

All three ontologies must be available in a decidable logichsas OWL-DL [19]
in order to be used by the software during runtime. Furtheemiv is necessary for the
software to make use of a reasoner as a means for accessipgogedsing the ontolo-
gies. The application of our method leads to ontology-driseftware [17], i.e., software
that uses ontologies as a central part of their operatiose®@an these considerations,
we describe how the combination of Semantic Web technologgther with the three
ontologies contributes to the development of robust andaigle software and software
models.

3.2. Role of task ontology

The task ontology is the conceptual model of the softwa@ritains the types to which
the software can react, i.e., a conceptualization of thelpro that the software is sup-
posed to solve. These types are usually directly implendeatel used in the software,
e.g., as classes or modules. Directly using an ontologyeasahceptual schema together
with a reasoner brings with it a series of benefits. Notahlyreasoner can answer inten-
sional queries about the conceptual schema and make the@navailable to the soft-

3The task ontology is an ontology for the problem that thevsarfée solves, or the task it is supposed to
perform. It specifies the conceptual model of the softwares Hifferent from the “task ontology” in [17],
which is an ontology of tasks.

4We usetask ontology andconceptual model interchangeably throughout the remainder of the paper.

5Although considerable research has been invested in #ws ao simple solution to this problem is known
to us. The foundation is usually carried out manually by th®logy designer. In this paper, we assume a
means for establishing this foundation as given.

ware. Furthermore, it can verify the consistency of the dath the conceptual schema
during the runtime of the software. Due to the ontologicainfdation of the conceptual
model and the possibility to query this model, the softwargtesm has access teal-
world types and knowledge. This is a direct application of Seroaiib technology to
the task of software development.

The specification of a task ontology does not suffice to cotalylespecify a soft-
ware model because it does not contain information pengitd the application of such
an ontology-driven software within a specific domain. Apgtion to a domain necessi-
tates the availability of additional knowledge about theety, relations and constraints
that govern the domain. This is usually not captured in theeeptual model of the soft-
ware. For example, the conceptual model of our ontologyoedintains categories for
Relation and Category, but not specific relations likpart-of or specific categories such
asBaking or Pizza. We will use the domain ontology to address this issue.

Furthermore, when applying software within different domsaa principled way
for exchanging information between these applicationgificial. In order to preserve
the individual semantics of statements within each dontampntological status of the
types within domains must be made precise and transfergedher with the data. In the
case of our ontology editor, consider one application todi@ain of online shopping
and another to the domain of pizzas. In order to integratrinétion contained in both
domains of application, meta-information about the tyjeg tire used must be made
explicit. In the particular example of the ontology edittire categories that represent
relations and categories must be made explidihis problem will be addressed by the
top-level ontology.

Finally, it may occur that domain-specific types and relatiare related in specific
ways to types used in the conceptual model. For example, motayy editor may be
used together with a domain ontology that contains a cayegforelations. These must
be used by the editor both as categories and as relationsifipéest relation between
domain categories and categories from the conceptual neteguivalence”, when the
domain of application contains types that are used in theemmal model itself. To
support the interaction between a software’s conceptuaeinand the model of a do-
main, principles for the interaction between domain-djeknowledge and the concep-
tual model must be made explicit in way that allows for infatian flow between both.
We will use the top-level ontology for this purpose.

3.3. Role of domain ontology

To support the goal of developing modular, domain-indepaehdoftware models, we
use domain ontologies to adapt the software to a domain. dhmach ontology contains
relations, types and laws specific to the domain.

The domain ontology is an exchangeable module both in thevacf model and
the software architecture. To apply the software systemdaraain, a domain ontology
must be used to provide domain-specific knowledge. The tgptte domain ontology
can be used by the software for tasks such as asking intethgjaeries about the do-

6There are two readings of “category” in this sentence. Tt fafers to the categories that are used in
the conceptual model of the software. The second refers toittetances. In GFO, these are instances of
the Category category. In ontologies without higher-order categorthese are sub-categories of thetity
category.

main of application and verifying the ontological adequatyata according to domain
knowledge.

In the example of the ontology editor, arguments of relatioray be filled only by
instances of certain domain-specific categories. Which dosecific types’ instances
can fill which arguments can be found out by an intensionahgoa the domain on-
tology. Furthermore, when an instance of a relation categoalso declared as the in-
stance of a category disjoint with relation, an exceptiamlva declared and appropriate
error handling performed. Our improves reusability ovagerapches such as MDE. For
example, transforming the model of an online shop into ameribrary require only a
change in the domain ontology and its mappings to the otleenets of our method.

Two points remain open: how are the conceptual model of tlftevare and the
domain ontology related, and how can two software systerifs thé same conceptual
model but using different domain ontologies exchange czgrate their data. These
problems are addressed by the third component in our methedop-level ontology.

3.4. Role of top-level ontology

For integrating the task and domain ontologies, we use detggd-ontology. It provides
an ontological foundation for the categories of both the dionand task ontology. Since
the task ontology is founded in a top-level ontology, thé tastology’s entities can in-
terrelate with other ontological entities, including teascluded in the domain ontology.

Through the top-level ontology, information can flow [20piath directions between
the task and the domain ontology. First, the types and oglatof the domain ontology
are combined with elements of the conceptual model througtop-level ontology. This
extends the conceptual model with domain-specific congegltgtions and axioms. Our
ontology editor can then access the categories and redatiam are available within the
domain ontology.

Second, domain-specific knowledge may entail the existeh@estances of cate-
gories which belong to the conceptual model. This can inttednew information to
which the software must react. For example, creating aamast of a domain ontology
category that is a sub-category Rélation must entail the creation of a new relation
within the ontology editor.

4. Semantic Wiki: the BOWiki

Our method has been applied to the development of the BOR/Kj fn ontology-based
semantic wiki. In this section, we illustrate how our methead to the development of
a modular and extensible implementation.

4.1. Problem statement

The goal was to develop a wiki for the structured annotatiotiada. The annotation of
data refers to the association of categories from ontotogith a piece of information.
This type of annotation is widely used in parts of biology,end data is annotated to
categories from biological ontologies. The wiki must alltaw the creation of relations
between entities. Relations can have arbitrary arity. tfepoto distinguish the arguments

Relation 1 instance-of 0.* Relationinstance

Relationld RelationInstanceld
Name Relationld
1 1
context-of
1.* 1.*
Role 1 instance-of 0..* Argument
Roleld RelationInstanceld
Relationld Objectld
Typeld Roleld
0..* 0.*
plays
1.x 1
Type 1.* instance-of 0.* Object
Typeld Objectld
Name Object

Figure 2. Conceptual model of the BOWiki in UML.

of these relations, they are constructed out of relatiavlabr[22] (in their simplest form,
named argument slots).

In order to provide a form of quality control for the knowlexlgaptured in the wiki,
not every object can play every role in every relation. Rolsonly be played by objects
of a certaintype. The available types depend on the domain in which the wittivsoe
is applied. Relations may also depend on the domain of disepbut for integrating
knowledge bases using the wiki software, new relations eaddelared. The available
types within the wiki are imported from an OWL-DL ontologies.

During the set-up of the wiki software, background knowkeddpout the domain
can be provided, and the wiki uses this knowledge to verifjesaspects of its content.
In addition, we want to provide a means to assert intermiatbetween more than two
entities by usinge-ary relations. Our primary application is biology, where aim at
applying the wiki to the annotation of genes and gene pradoderms from ontologies.
However, the BOWiki software is intended to be domain-irefefent.

4.2. Conceptual model

The BOWiki is an extension of the MediaWiki software. It teaikipages as instances
and allows the assertion of relations between these instafelations have named ar-
gument slots (roles) that can be filled by objects of a spetjifie. Types are either
datatypes or concepts from an OWL ontology (object types).

The basic categories that the BOWiki uses are relationss anid types together with
the instantiation relation, thglays relation that connects an object with a role, and the
role-of relation that connects a role with a relation. Several iegins can be formulated
and used by the BOWiki to verify consistency, suchiages C JroleO f.Relation or
Roles T (= 1)plays.T. The BOWIki uses the Pellet description logic reasoner [15]
to verify these constraints during runtime. The conceptoadle! of the BOWiki is the
module of the GFO pertaining to relations and roles [22].sTihibdule is described in
Figure 2.

4.3. Top-level ontology

Because the conceptual model for the BOWiki is a part of tipeléwel ontology GFO,
its ontological foundation in a top-level ontology is tavi Due to its foundation in GFO,
additional information is added to relations, roles andes/pRelations and relational
roles are concrete entities, i.e., they are in time and spdeey are disjoint from other
entities like processes, categories, or sets.

The BOWiki software uses both the GFO and its conceptual iModmnjunction
with a description logic reasoner. Therefore, additiormaistraints are provided by the
use of a top-level ontology. If axioms from either ontologg @iolated, an edit in the
BOWiki is rejected and the user notified.

4.4. Domain ontology: GFO-Bio

Domain-specific knowledge can influence the conceptual irafdbee BOWiki applica-
tion by prodiving types of categories, relations and rallest are interpreted accordingly
by the BOWiki.

We want to apply the BOWiki for the annotation of data to catégs of biologi-
cal ontologies. For this purpose, we want to describe abjeficspecific biological types
within the BOWiki. For example, the category of FOXP2 proteis related to the cate-
gory of Language development by theparticipatesin relation. In this example, the types
Category, FOXP2 protein and Language development appear and a binary relatiquar-
ticipatesin. The typesProtein (a material structure) andanguage development (a pro-
cess) are disjoint. The relatiguarticipates in has two roles which we ca#ubject and
object, and each role may only be played of entities of a specific (gpeain and range
restrictions). We use the biological core ontology GFO-Ri8] for this application.

5. Collaborative Tagging

Tagging refers to the association of a set of keywords withesobject. Collaborative
tagging enables multiple users to individually tag objectd share the tagged objects or
the tags for these objects. There is an enormous number itdlateasystems for the col-
laborative tagging of entities. Users can tag movies (Yduef pictures (Flick?), Web-
sites (del.icio.u¥ or documents (CiteULik&). Depending on theype of tagged object,
different tagging platforms are implemented. The type gfjd object determines the
attributes that are stored with it. For documents, theselmdiie author, date of publica-
tion, journal, etc. For a webpage, it may be its URL, for plgoaphs the type of camera
used to take it or for movies the actors and director.

Depending on the type of tagged object, the tags may desdiffieeent aspects or
facets of it. Some tagging systems support the use of faizgjs:can be associated to
different aspects of the tagged object. Often, severaldtdtecets like “theme” or “topic”
are used. While these facets are common to many tagging syjsteveral possible facets

http://www.youtube.com
8http://www.flickr.com
Shttp://del.icio.us
LOnttp://www.citeulike.org

depend on the type of tagged object: videos may not only hégie, but also temporal
duration or temporal parts. Photographs have color-scheltielecules have functions,
structural parts, shape and weight.

We describe a collaborative tagging systéthat allows for tagging objects of dif-
ferent types. Depending on the type of tagged object, @iffeinformation about the ob-
jectis stored. In addition, tags can be associatdddeis of objects. Some facets depend
on the type of tagged object, while others are applicableyaagging action.

We outline the tagging ontology of [24], which forms the fdation of the tagging
software discussed here. It is based on [25] and the GFO [6].

A basic entity in the tagging domain &g, which is the role played by the string
a tagger enters during a tagging action. The tag is a coniciditédual. It instantiates a
special kind of category, &mbol structure. The tag is d@oken of the symbol structure.

The tag is associated with an object. This object can be atity.efVhile the object
referred to by a URI is often identified with its URI [25, 26k, the analysis of tagging,
it becomes important to distinguish between the objlestribed by a URI and the URI
itself. A tag can relate to either of these, and the naturkisfrelationship differs. There-
fore, [24] distinguishs two kinds of entity, an informatiobject containing information
about some other entity, and the entity that is describetéyformation object.

It is assumed in [24] that tags are always associated to @hject information re-
sources describing them. In order to specify the way thakesemntity relates to whatever
is denoted by a tadacets are introduced. Facets are relationships that an entithaas
to other entities. For example, physical objects can hgvartof facet, aparticipates-
in facet, but also facets relating it to categories, likeratance-of facet. According to
the tagging ontology, every entity can be denoted by somer @thtity (an information
resource). When the denotation itself is used as a facet amthined with relations
available for information resources, entities can be tdggethat the meaning of the tag
relates to the information resource describing the entity.

Tagging is an intensional act, i.e., it involves a concelptation of the tagger. In
particular, not every instance of the same symbol strudgtitesed to denote the same
thing. Therefore, different taggers associate differemicepts with tokens of a symbol
structure. For example, the tédgnk can refer to many different entities, depending on
the background of the tagger. The domain and range restigctif the relations used to
construct facets for tagged entities can also be used tidyclae different meanings of
tags depending on the tagger. For a full discussion of thertégogy, see [24].

While this forms a comprehensive core ontology for the taggiomain, most tag-
ging systems do not use all of them. For example, facetedriggrystems are rarely
employed, concepts are almost never used and the distirttioveen an entity and the
information resource that describes it is seldom explatatwever, this tagging ontol-
ogy provides a means for analyzing collaborative taggirgiesys. Even if only a frag-
ment of the ontology is used as the conceptual schema of aaterimplementation, the
ontology can be used to share information with other taggirggjems, if they employ a
similar schema.

A domain ontology like GFO-Bio can be used to configure thgitag software. In
particular, it can be used to generate the facets applitatite tagged object, and the
properties of the tagged object. The domain ontology pexitie knowledge about the
entities that play the role of the tagged object in the taggatation.

Uhttp://bioonto.de/pmwiki.php/Main/Collaborative TaggBystem

Level Three-Ontology-Method MDA/UML

==
- ||
(===
S

Figure 3. Comparison of our method with MDE. The four levels of abst@ttn MDE are shown on the
left. The three main components of our method are situated ortidImodel level. We use OWL in M2 as
the meta-model. Model-driven architecture with UML is showithe right. Both MDA and our method focus
primarily on the levels MO to M2. The level M3, the meta-metamodah be filled by the Meta Object Facility
(MOF) [31] in both cases. This requires a MOF specificatio®@®fL.

6. Comparison with M odel-Driven Softwar e Development

A recent development in the area of software developmetiteced around the use and
development of models. Models are reusable artifacts armlige a unique opportunity
to mitigate complexity, improve consumability, and redtioge to market” [27]. Model-
driven approaches such as Model-Driven Engineering (M2B],[Model-Driven Ar-
chitecture (MDA) [29] and Model-Driven Software DevelopméMDSD) [30] aim at
developing formal conceptual models for software and u#iiegn directly to generate
code for software applications. In MDE, software modelssprecified using formal lan-
guages such as UML. A wide range of tools is available to stpe generation of code
from these models.

The method we propose is similar to MDE in some aspects. BoMDE and our
method, conceptual modelling plays a prominent role in #&gh and development of
software systems. These can be used in both cases to autaliyagenerate code for the
designed applications. However, we use OWL as our meta-nvaldiéd MDE is often
carried out using UML. Therefore, using our method leadsetmantically richer and
modular models.

Our method goes beyond the current state of the artin MDE.afYsider the follow-
ing features the most outstanding advances over MDE: firptpvides an ontological
foundation of the conceptual and domain models and consigteerification; second, it
enforces a strict division between the conceptual and domaidels; third, it allows for
intensional queries and consistency checks during runtime

The resulting model consists of the three componentsiiited in Figure 3. When
these models are formalized in a decidable fragment of OWh sscOWL-DL, auto-
mated reasoners can be employed to verify the model's densis This can be per-

formed for each component of the model individually, essdiihg the consistency of
the top-level ontology, the conceptual model and the domaialogy. When combining
the top-level ontology and the conceptual model or the éwellontology and the do-
main ontology, inconsistencies can arise. These can benatitally detected and sub-
sequently eliminated. The detection of inconsistenciesras the consistent foundation
of both the conceptual model and the domain ontology in thdewel ontology. Finally,
the consistency of all three model components togethertivitin foundations in the top-
level ontology is verified. As a result, the compatibilitytbe ontological commitments
of the conceptual model and the domain ontology is ensured.

The division between the conceptual model of the softwacetha model for the
domain to which the software is being applied leads to highdgdular software models
and thus to modular software systems. The conceptual mogether with the top-level
ontology provides an interface for integrating domain nisdethe form of domain on-
tologies. Such ontologies are available for many domaioisube with our method, these
ontologies must be founded in the top-level ontology and digsistent with the con-
ceptual model. This allows reusing domain ontologies faetigping software models.
Additionally, the part of the software model consisting loé tonceptual model and the
top-level ontology can be used across multiple domains.

The last major advancement over model-driven approachestithe availability
of the software model during the runtime of the software.sTdan be used within the
software system to verify the consistency of instances Witth the conceptual model
and the domain ontology during runtime. This can be used filyveonstraints on data
that is processed by the software. Furthermore, automagsbners can be employed
by the software during runtime to perform intensional gegn the software system’s
model itself. As such, the software has access to the typkegians and constraints that
it can process. This could, for example, be used to implesemantic web services that
automatically derive the types they accept as input or preds output. These types can
depend either on the conceptual model of the service, orotiuetel ontology, on the
domain ontology or a combination of these three components.

7. Discussion

The method we describe extends earlier work in formal ogiekin information sys-
tems [17] and applies it to software engineering. With theengé progress in Seman-
tic Web technology, it is now possible to apply the method wsctibe to large-scale
software development. To illustrate our method, we disedisbe implementation of a
semantic wiki and a collaborative tagging system.

A main advantage of our method is the use of a domain ontolsgy module in
a software model. This enables the construction of modutadeais that can be applied
across multiple domains while preserving comparabilitst eonsistency. Using Seman-
tic Web technology like description logic reasoners and OWitolmgies in the soft-
ware systems yields a means for verifying the model’s ctersty and the ontological
adequacy of stored and processed data. The foundation mlavel ontology like the
GFO [6] leads to ontologically well-founded models and ngak®e ontological com-
mitment of these models explicit. Together with automatesicdption logic reasoners,
intensional queries both over the software’s conceptuadehas well as the domain
ontology become possible.

There is a similarity between our method and Model-Drivergikeering [32]
(MDE): in both methods, the conceptual model and the modal @dmain play a cen-
tral role in the software development process. In modeledrengineering, however, the
conceptual model of a software system is used to generateinogrious levels of de-
tail. In our method, the model can be used during runtime &vifying the integrity of
data and the internal state of the software. It is conced/aidwever, that the software
model generated according to our method is used in a mode&rdengineering process
to generate code. This code could then be generated in sualy that it automatically
includes an OWL reasoner in the software code, and apply the szodel that was used
to generate the code for the verification of data during meti

When implementing software using the approach describes] tter software must
employ a reasoner for many of its internal operations. Algtothe performance of rea-
soners capable of processing expressive languages like DMHhas improved in recent
years, reasoning remains a complex problem. In particigigua reasoner for applica-
tions that require high performance may currently be uriidas

8. Conclusion

We described a method for developing flexible, modular antsistent software mod-
els based on the interaction of three kinds of ontologies. filethod reuses research in
ontological foundations of conceptual modelling. It is &@&®n the use of ontologies as
conceptual models for software systems and the separdtibe software’s conceptual
model from the model of a domain of application. We proposetiisign software mod-
els in a way that enables using a domain ontology as a refikceedule. The interrela-
tions between the domain ontology and the software’s caneémodel are established
using a top-level ontology. This permits applying partsha model across multiple do-
mains.

The method we described has been successfully applied éboglea semantic wiki
and a semantic collaborative tagging system. We showed hwovagproach compares
with model-driven engineering. In particular, we illusgd how our method exceeds
model-driven engineering with respect to domain-depeoeland the verification of the
developed models both for consistency and ontological @alq Finally, we discuss
how to integrate our method with model-driven engineering.

Acknowledgements

We thank Janet Kelso for valuable comments on this paper.

References

[1] Herre, H., Heller, B.: Semantic foundations of medicabimhation systems based on top-level ontolo-
gies. Knowledge-Based Systet®(2) (2006) 107-115

[2] Guizzardi, G.: Ontological Foundations for Structu€dnceptual Models. Volume 015 of Telematica
Instituut Fundamental Research Series. Telematica Ins{R2005)

[3]

[4]
[5]
(6]

[7]

(8]
19]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]

[20]
[21]

(22]
(23]

(24]

Evermann, J., Wand, Y.: Towards ontologically based seitstfior UML constructs. In: ER '01:
Proceedings of the 20th International Conference on Cdnaéplodeling, London, UK, Springer-
Verlag (2001) 354-367

Wand, Y., Storey, V.C., Weber, R.: An ontological anadysf the relationship construct in conceptual
modeling. ACM Trans. Database Sy24(4) (1999) 494-528

Gruber, T.R.: Toward principles for the design of onggikes used for knowledge sharing. International
Journal of Human-Computer Studié3(5-6) (1995) 907-928

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, Michalek, H.: General Formal Ontology
(GFO) — A foundational ontology integrating objects andgasses [Version 1.0]. Onto-Med Report 8,
Research Group Ontologies in Medicine, Institute of Medictormatics, Statistics and Epidemiology,
University of Leipzig, Leipzig (2006)

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramé&xi. WonderWeb Deliverable D18: On-
tology library (final). Technical report, Laboratory for Alied Ontology — ISTC-CNR, Trento (Italy)
(2003)

Herre, H., Loebe, F.: A meta-ontological architectureffundational ontologies. In: On the Move to
Meaningful Internet Systems 2005: CooplS, DOA, and ODBASHirfger Verlag (2005) 1398-1415
Gracia, J.J.E.: Metaphysics and Its Task: The SearchhierCategorcal Foundation of Knowledge.
SUNY Series in Philosophy. SUNY Press (1999)

Valente, A., Breuker, J.: Towards principled core dogies. In Gaines, B.R., Musen, M.A., eds.:
Proceedings of the 10th Knowledge Acquisition Workshop (KA®8), Banff, Alberta, Canada, Nov
9-14. (1996) 301-320

Guarino, N.: The ontological level. In Casati, R., Smith, White, G., eds.: Philosophy and the
Cognitive Sciences. Holder-Pichler-Tempsky, Vienna (3994

Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, ,[5eaborne, A., Wilkinson, K.: Jena: Implementing
the Semantic Web recommendations. Technical Report HPL-2863Hewlett Packard, Bristol, UK
(2003)

Horridge, M., Bechhofer, S., Noppens, O.: Igniting tvd 1.1 touch paper: The owl api. In: Proceedings
of OWLEd 2007: Third International Workshop on OWL Experienead Directions. (2007)

Tsarkov, D., Horrocks, |.: FaCT++ description logiasener: System description. In Furbach, U.,
Shankar, N., eds.: Automated Reasoning: Proceedings ofttind Ihternational Joint Conference, 13-
CAR 2006, Seattle, Washington, USA, Aug 17-20. Volume 4130=ature Notes in Computer Science.,
Berlin, Springer (2006) 292-297

Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In Hgav, V., Mdller, R., eds.: Proceedings of the
2004 International Workshop on Description Logics, DL200istler, British Columbia, Canada, Jun
6-8. Volume 104 of CEUR Workshop Proceedings., Aachen, Geyn@BUR-WS.org (2004) 212-213
Guizzardi, G., Herre, H., Wagner, G.: Towards ontobagifoundations for UML conceptual models. In:
On the Move to Meaningful Internet Systems, 2002 - DOA/CodPIBASE 2002 Confederated Inter-
national Conferences DOA, CooplS and ODBASE 2002, Londdf, &pringer-Verlag (2002) 1100—
1117

Guarino, N.: Formal ontology and information systems. ma@no, N., ed.: Proceedings of the 1st
International Conference on Formal Ontologies in Informat8ystems, FOIS'98, I0S Press (1998)
3-15

Heller, B., Herre, H., Lippoldt, K.: Domain-specific ccgpts and ontological reduction within a data
dictionary framework. In: Data Integration in the Life Sades. Springer Verlag (2004) 47-62
McGuinness, D.L., van Harmelen, F..: OWL Web Ontology Laamggioverview. W3C recommendation,
World Wide Web Consortium (W3C) (2004)

Schorlemmer, M., Kalfoglou, Y.: On semantic interopeliband the flow of information (2003)
Hoehndorf, R., Prifer, K., Backhaus, M., Herre, H., $®lJ., Loebe, F., Visagie, J.: A proposal for a
gene functions wiki. In Meersman, R., Tari, Z., Herrero, &s.eProceedings of OTM 2006 Workshops,
Montpellier, France, Oct 29 - Nov 3, Part |, Workshop Knovgedystems in Bioinformatics, KSinBIT
2006. Volume 4277 of Lecture Notes in Computer Science., BeSpringer (2006) 669-678

Loebe, F.: Abstract vs. social roles — Towards a gerteeretical account of roles. Applied Ontology
2(2) (2007) 127-158

Hoehndorf, R., Loebe, F., Poli, R., Herre, H., Kelso,GFO-Bio: A biological core ontology. Applied
Ontology (2008) forthcoming.

Uciteli, A.: Ontologien und kollaborative Taggingsgme. Master’s thesis, Department of Computer

(25]
(26]
[27]

(28]
[29]

(30]
(31]
(32]

Science, University of Leipzig (2008) forthcoming.

Newman, R.: Tag ontology design. http://www.holygoatuk/projects/tags/ (2005) Last accessed: Nov
20, 2007.

Pepper, S., Schwab, S.: Curing the web'’s identity sriSubject indicators for rdf. In: Proceedings of
the XML conference 2003. (2003)

Larsen, G.: Model-driven development: Assets and relB& Systems Journad5(03) (2006) 541 —
554

Bézivin, J.: On the unification power of models. Softwarel Systems Modeling(2) (2005) 171-188
Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA DistilledPrinciples of Model-Driven Architecture.
Addison-Wesley, Boston (2004)

Stahl, T., Voelter, M.: Model-Driven Software Developnt. John Wiley & Sons, Ltd (2006)

Object Management Group: Omg’s metaobject facility. Wiyww.omg.org/mof/ (2008)

Schmidt, D.C.: Guest editor’s introduction: Modelxgrn engineering. Comput88(2) (2006) 25-31

