
Developing Consistent and Modular
Software Models with Ontologies

Robert Hoehndorfa Axel-Cyrille Ngonga Ngomob Heinrich Herrec
a Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

and Department of Computer Science, University of Leipzig and Department of
Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology

b Department of Computer Science, University of Leipzig
c Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

Abstract. The development and verification of software models that are applica-
ble across multiple domains remains a difficult problem. We propose a novel ap-
proach to model-driven software development based on ontologies and Semantic
Web technology. Our approach uses three ontologies to definesoftware models: a
task ontology, a domain ontology and a top-level ontology. The task ontology serves
as the conceptual model for the software, the domain ontology provides domain-
specific knowledge and the top-level ontology integrates the task and domain on-
tologies. Our method allows the verification of these models both for consistency
and ontological adequacy. This verification can be performedboth at development
and runtime. Domain ontologies are replaceable modules, whichenables the com-
parison and application of the models built using our method across multiple do-
mains. We demonstrate the viability of our approach through the design and im-
plementation of a semantic wiki and a social tagging system, andcompare it with
model-driven software development to illustrate its benefits.

Keywords. Software engineering, formal ontology, ontology-driven design

1. Introduction

Current approaches to software development target at modular and reusable software.
The development of such software requires both an understanding of the tasks that the
software is supposed to perform and knowledge about the domain in which the software
is applied. Software models provide a means for specifying these characteristics. They
require a method both for making domain knowledge explicit and for integrating the
domain knowledge with the conceptual model of the software.Current approaches to
software are limited in this regard, as they are unable to separate conceptual and domain
models. Therefore, software implemented using current approaches to software devel-
opment can not be ported between domains without altering their conceptual model and
consequently the whole software model.

We propose a method for developing software based on the interactions of three dif-
ferent kinds of ontologies: the conceptual model of the software called thetask ontol-
ogy, a domain ontology and atop-level ontology. The task ontology is an ontology for
the problem domain, i.e., the problem that the software is intended to solve. The domain



ontology provides domain-specific knowledge for use by the software. The software can
use the domain ontology to verify the ontological adequacy of the data it processes. The
top-level ontology integrates these ontologies and allowsfor information flow between
them. It also provides a means for integrating data from different domains.

We demonstrate the viability of this method with two case studies: creating a se-
mantic wiki that guides users within a domain to enter correct knowledge and creating
a collaborative tagging system that recognizes the types oftagged objects and adapts to
them. We provide a comparison with model-driven software engineering and present the
advantages of our approach.

2. Background

2.1. Ontological foundations of conceptual modelling

Conceptual modelling is concerned with the identification,analysis, design and descrip-
tion of both concepts and relations that are related to some domain of interest. This in-
formation is specified in a modelling language based on a set of meta-concepts form-
ing the meta-model. Usually, conceptual modelling languages and the conceptual sys-
tems designed in these frameworks are evaluated based on their successful application,
whereas the underlying meta-models are not further analyzed and evaluated. An onto-
logical foundation of conceptual modelling goes a step further: it aims at a semantic re-
duction of the conceptual systems to a top-level ontology and its extensions in a princi-
pled way [1]. Ontologies, and in particular top-level ontologies, are rooted in methods of
philosophy, logic and artificial intelligence, and they provide a framework for conceptual
modelling [2].

Top-level ontologies can be used to evaluate the correctness of a conceptual model,
but also to develop guidelines for designing conceptual models. In recent years, these
problems were studied by several authors [2–4]. The approach presented here takes ad-
ditional steps towards establishing the role of ontologiesin the design of both conceptual
models and software systems.

2.2. Ontology

In computer science, an ontology refers to an explicit specification of a conceptualization
of a domain [5]. A conceptualization contains the basic categories and relations used
in a language to describe a domain. An ontology specifies the intension of these basic
categories and relations through a set of conditions, whichare presented as axioms in
some formalism. Based on their generality and scope, different types of ontologies can
be distinguished: top-level, core and domain ontologies.

A top-level ontology contains categories relevant to everydomain of reality [6]. Ex-
amples of these categories areProcess, Object or Category. Several top-level ontologies
are available for use, like the Descriptive Ontology for Linguistic and Cognitive Engi-
neering (DOLCE) [7] or the General Formal Ontology (GFO) [6]. Each possesses dif-
ferent features that determine their suitability for different applications. The examples
presented here are based on the GFO.

GFO is a top-level ontology integrating objects and processes [6]. It is a layered
ontology [8] that includes a theory of higher-order categories. These allow statements



about categories and the interrelations between them to be asserted, i.e., categories can be
treated as the objects of a domain. The GFO also employs a multi-categorical approach,
distinguishing between universals, concepts and symbols [9].

A core ontology [10] formally describes the basic categories within a domain. It
makes the nature of a domain precise. At least two views on core ontologies must be
distinguished. The first assumes that a core ontology contains the most general categories
with respect to a taxonomy on a domain. These categories specialize the categories of a
top-level ontology. The second view assumes that a core ontology is a formal theory of
the central or principal categories within a domain and their derivations. These central
categories and their derivations describe what the domain is about.

A domain ontology contains domain-specific types, relations and constraints. They
can be founded in a top-level or a core ontology. An example ofa domain ontology is
the Pizza Ontology1.

3. A method for ontology-based software engineering

In this section, we illustrate a method for developing software systems based on ontolo-
gies. This method uses three ontologies to define software models: a task ontology, a
domain ontology and a top-level ontology. The task ontologyserves as the conceptual
model for the software, the domain ontology provides domain-specific knowledge and
the top-level ontology integrates the task and domain ontologies.

We use the simple example of an ontology editor throughout this section to illustrate
our method. The ontology editor can be used to create ontological categories and rela-
tions between these categories. The relations can have an arbitrary number of arguments.
Every category can have instances.

3.1. Three ontology method

Our method is based on ontological foundations of conceptual modelling for software
engineering [2] and Semantic Web technology. In order to capture and formalize the
meaning [11] of the conceptual model, i.e., to make its ontological commitment explicit,
we argue for the use of ontologies as part of software models.Then, software that is
based on these models can access its own ontological commitment. Recent achievements
in Semantic Web technology, in particular libraries for RDF2 and OWL [12,13], as well
as expressive and feature-rich description logic reasoners [14, 15], make the realization
of this goal possible.

The method we propose consists of three steps. First, an ontology is created as the
conceptual model for the software. For this step, the results of research on ontological
foundations of conceptual modelling can be employed, e.g.,ontological foundations for
UML [16]. Consequently, developing a shopping software requires the creation of an on-
tology for the shopping domain, developing a wiki requires awiki ontology, developing
a tagging software requires a tagging ontology, and so on. Wecall the resulting ontology

1http://www.co-ode.org/ontologies/pizza/
2http://librdf.org



Figure 1. Three-ontology method: conceptual model, core or domain ontology and the top-level ontology in-
tegrating both. The domain ontology provides domain-specificknowledge and the top-level ontology provides
a means for allowing information flow between the domain ontology and the conceptual model.

the task ontology34. Second, a top-level ontology is used as the foundation for the task
ontology. The foundation can be established using a method of ontological reduction and
mapping5 [1, 18]. Third, a domain ontology, founded in the same top-level ontology as
the task ontology, is used to provide domain-specific knowledge that is used within the
software. Figure 1 illustrates the interactions between these ontologies. The software im-
plementing this method uses the task and the top-level ontologies to specify an interface
for using entities from domain ontologies. Therefore, domain ontologies are replaceable
modules in this architecture.

All three ontologies must be available in a decidable logic such as OWL-DL [19]
in order to be used by the software during runtime. Furthermore, it is necessary for the
software to make use of a reasoner as a means for accessing andprocessing the ontolo-
gies. The application of our method leads to ontology-driven software [17], i.e., software
that uses ontologies as a central part of their operation. Based on these considerations,
we describe how the combination of Semantic Web technology together with the three
ontologies contributes to the development of robust and reusable software and software
models.

3.2. Role of task ontology

The task ontology is the conceptual model of the software; itcontains the types to which
the software can react, i.e., a conceptualization of the problem that the software is sup-
posed to solve. These types are usually directly implemented and used in the software,
e.g., as classes or modules. Directly using an ontology as the conceptual schema together
with a reasoner brings with it a series of benefits. Notably, the reasoner can answer inten-
sional queries about the conceptual schema and make the answers available to the soft-

3The task ontology is an ontology for the problem that the software solves, or the task it is supposed to
perform. It specifies the conceptual model of the software. It is different from the “task ontology” in [17],
which is an ontology of tasks.

4We usetask ontology andconceptual model interchangeably throughout the remainder of the paper.
5Although considerable research has been invested in this area, no simple solution to this problem is known

to us. The foundation is usually carried out manually by the ontology designer. In this paper, we assume a
means for establishing this foundation as given.



ware. Furthermore, it can verify the consistency of the datawith the conceptual schema
during the runtime of the software. Due to the ontological foundation of the conceptual
model and the possibility to query this model, the software system has access toreal-
world types and knowledge. This is a direct application of Semantic Web technology to
the task of software development.

The specification of a task ontology does not suffice to completely specify a soft-
ware model because it does not contain information pertaining to the application of such
an ontology-driven software within a specific domain. Application to a domain necessi-
tates the availability of additional knowledge about the types, relations and constraints
that govern the domain. This is usually not captured in the conceptual model of the soft-
ware. For example, the conceptual model of our ontology editor contains categories for
Relation andCategory, but not specific relations likepart-of or specific categories such
asBaking or Pizza. We will use the domain ontology to address this issue.

Furthermore, when applying software within different domains, a principled way
for exchanging information between these applications is beneficial. In order to preserve
the individual semantics of statements within each domain,the ontological status of the
types within domains must be made precise and transferred together with the data. In the
case of our ontology editor, consider one application to thedomain of online shopping
and another to the domain of pizzas. In order to integrate information contained in both
domains of application, meta-information about the types that are used must be made
explicit. In the particular example of the ontology editor,the categories that represent
relations and categories must be made explicit6. This problem will be addressed by the
top-level ontology.

Finally, it may occur that domain-specific types and relations are related in specific
ways to types used in the conceptual model. For example, our ontology editor may be
used together with a domain ontology that contains a category of relations. These must
be used by the editor both as categories and as relations. Thesimplest relation between
domain categories and categories from the conceptual modelis “equivalence”, when the
domain of application contains types that are used in the conceptual model itself. To
support the interaction between a software’s conceptual model and the model of a do-
main, principles for the interaction between domain-specific knowledge and the concep-
tual model must be made explicit in way that allows for information flow between both.
We will use the top-level ontology for this purpose.

3.3. Role of domain ontology

To support the goal of developing modular, domain-independent software models, we
use domain ontologies to adapt the software to a domain. The domain ontology contains
relations, types and laws specific to the domain.

The domain ontology is an exchangeable module both in the software model and
the software architecture. To apply the software system in adomain, a domain ontology
must be used to provide domain-specific knowledge. The typesof the domain ontology
can be used by the software for tasks such as asking intensional queries about the do-

6There are two readings of “category” in this sentence. The first refers to the categories that are used in
the conceptual model of the software. The second refers to their instances. In GFO, these are instances of
the Category category. In ontologies without higher-order categories,these are sub-categories of theEntity
category.



main of application and verifying the ontological adequacyof data according to domain
knowledge.

In the example of the ontology editor, arguments of relations may be filled only by
instances of certain domain-specific categories. Which domain-specific types’ instances
can fill which arguments can be found out by an intensional query on the domain on-
tology. Furthermore, when an instance of a relation category is also declared as the in-
stance of a category disjoint with relation, an exception can be declared and appropriate
error handling performed. Our improves reusability over approaches such as MDE. For
example, transforming the model of an online shop into an online library require only a
change in the domain ontology and its mappings to the other elements of our method.

Two points remain open: how are the conceptual model of the software and the
domain ontology related, and how can two software systems with the same conceptual
model but using different domain ontologies exchange or integrate their data. These
problems are addressed by the third component in our method,the top-level ontology.

3.4. Role of top-level ontology

For integrating the task and domain ontologies, we use a top-level ontology. It provides
an ontological foundation for the categories of both the domain and task ontology. Since
the task ontology is founded in a top-level ontology, the task ontology’s entities can in-
terrelate with other ontological entities, including those included in the domain ontology.

Through the top-level ontology, information can flow [20] inboth directions between
the task and the domain ontology. First, the types and relations of the domain ontology
are combined with elements of the conceptual model through the top-level ontology. This
extends the conceptual model with domain-specific concepts, relations and axioms. Our
ontology editor can then access the categories and relations that are available within the
domain ontology.

Second, domain-specific knowledge may entail the existenceof instances of cate-
gories which belong to the conceptual model. This can introduce new information to
which the software must react. For example, creating an instance of a domain ontology
category that is a sub-category ofRelation must entail the creation of a new relation
within the ontology editor.

4. Semantic Wiki: the BOWiki

Our method has been applied to the development of the BOWiki [21], an ontology-based
semantic wiki. In this section, we illustrate how our methodlead to the development of
a modular and extensible implementation.

4.1. Problem statement

The goal was to develop a wiki for the structured annotation of data. The annotation of
data refers to the association of categories from ontologies with a piece of information.
This type of annotation is widely used in parts of biology, where data is annotated to
categories from biological ontologies. The wiki must allowfor the creation of relations
between entities. Relations can have arbitrary arity. In order to distinguish the arguments



context-of

 RelationInstanceId
 RelationId

RelationInstance

 RelationId
 Name

Relation

 RoleId
 RelationId
 TypeId

Role

 RelationInstanceId
 ObjectId
 RoleId

Argument

 ObjectId
 Object

Object

 TypeId
 Name

Type

1

1..*

1 0..*

1

1..*

0..*

1..*

0..*

1

1 0..*

1..* 0..*

instance-of

plays

instance-of

instance-of

Figure 2. Conceptual model of the BOWiki in UML.

of these relations, they are constructed out of relational roles [22] (in their simplest form,
named argument slots).

In order to provide a form of quality control for the knowledge captured in the wiki,
not every object can play every role in every relation. Rolescan only be played by objects
of a certaintype. The available types depend on the domain in which the wiki software
is applied. Relations may also depend on the domain of discourse, but for integrating
knowledge bases using the wiki software, new relations can be declared. The available
types within the wiki are imported from an OWL-DL ontologies.

During the set-up of the wiki software, background knowledge about the domain
can be provided, and the wiki uses this knowledge to verify some aspects of its content.
In addition, we want to provide a means to assert interrelations between more than two
entities by usingn-ary relations. Our primary application is biology, where we aim at
applying the wiki to the annotation of genes and gene products to terms from ontologies.
However, the BOWiki software is intended to be domain-independent.

4.2. Conceptual model

The BOWiki is an extension of the MediaWiki software. It treats wikipages as instances
and allows the assertion of relations between these instances. Relations have named ar-
gument slots (roles) that can be filled by objects of a specifictype. Types are either
datatypes or concepts from an OWL ontology (object types).

The basic categories that the BOWiki uses are relations, roles and types together with
the instantiation relation, theplays relation that connects an object with a role, and the
role-of relation that connects a role with a relation. Several restrictions can be formulated
and used by the BOWiki to verify consistency, such asRoles ⊑ ∃roleOf.Relation or
Roles ⊑ (= 1)plays.⊤. The BOWiki uses the Pellet description logic reasoner [15]
to verify these constraints during runtime. The conceptualmodel of the BOWiki is the
module of the GFO pertaining to relations and roles [22]. This module is described in
Figure 2.



4.3. Top-level ontology

Because the conceptual model for the BOWiki is a part of the top-level ontology GFO,
its ontological foundation in a top-level ontology is trivial. Due to its foundation in GFO,
additional information is added to relations, roles and types. Relations and relational
roles are concrete entities, i.e., they are in time and space. They are disjoint from other
entities like processes, categories, or sets.

The BOWiki software uses both the GFO and its conceptual model in conjunction
with a description logic reasoner. Therefore, additional constraints are provided by the
use of a top-level ontology. If axioms from either ontology are violated, an edit in the
BOWiki is rejected and the user notified.

4.4. Domain ontology: GFO-Bio

Domain-specific knowledge can influence the conceptual model of the BOWiki applica-
tion by prodiving types of categories, relations and roles,that are interpreted accordingly
by the BOWiki.

We want to apply the BOWiki for the annotation of data to categories of biologi-
cal ontologies. For this purpose, we want to describe objects of specific biological types
within the BOWiki. For example, the category of FOXP2 proteins is related to the cate-
gory of Language development by theparticipates in relation. In this example, the types
Category, FOXP2 protein andLanguage development appear and a binary relationpar-
ticipates in. The typesProtein (a material structure) andLanguage development (a pro-
cess) are disjoint. The relationparticipates in has two roles which we callsubject and
object, and each role may only be played of entities of a specific type(domain and range
restrictions). We use the biological core ontology GFO-Bio[23] for this application.

5. Collaborative Tagging

Tagging refers to the association of a set of keywords with some object. Collaborative
tagging enables multiple users to individually tag objectsand share the tagged objects or
the tags for these objects. There is an enormous number of available systems for the col-
laborative tagging of entities. Users can tag movies (YouTube7), pictures (Flickr8), Web-
sites (del.icio.us9) or documents (CiteULike10). Depending on thetype of tagged object,
different tagging platforms are implemented. The type of tagged object determines the
attributes that are stored with it. For documents, these maybe the author, date of publica-
tion, journal, etc. For a webpage, it may be its URL, for photographs the type of camera
used to take it or for movies the actors and director.

Depending on the type of tagged object, the tags may describedifferent aspects or
facets of it. Some tagging systems support the use of facets:tags can be associated to
different aspects of the tagged object. Often, several default facets like “theme” or “topic”
are used. While these facets are common to many tagging systems, several possible facets

7http://www.youtube.com
8http://www.flickr.com
9http://del.icio.us
10http://www.citeulike.org



depend on the type of tagged object: videos may not only have atopic, but also temporal
duration or temporal parts. Photographs have color-schemes. Molecules have functions,
structural parts, shape and weight.

We describe a collaborative tagging system11 that allows for tagging objects of dif-
ferent types. Depending on the type of tagged object, different information about the ob-
ject is stored. In addition, tags can be associated tofacets of objects. Some facets depend
on the type of tagged object, while others are applicable to any tagging action.

We outline the tagging ontology of [24], which forms the foundation of the tagging
software discussed here. It is based on [25] and the GFO [6].

A basic entity in the tagging domain isTag, which is the role played by the string
a tagger enters during a tagging action. The tag is a concreteindividual. It instantiates a
special kind of category, aSymbol structure. The tag is atoken of the symbol structure.

The tag is associated with an object. This object can be any entity. While the object
referred to by a URI is often identified with its URI [25, 26], in the analysis of tagging,
it becomes important to distinguish between the objectdescribed by a URI and the URI
itself. A tag can relate to either of these, and the nature of this relationship differs. There-
fore, [24] distinguishs two kinds of entity, an informationobject containing information
about some other entity, and the entity that is described by the information object.

It is assumed in [24] that tags are always associated to objects, not information re-
sources describing them. In order to specify the way that some entity relates to whatever
is denoted by a tag,facets are introduced. Facets are relationships that an entity canhave
to other entities. For example, physical objects can have apart-of facet, aparticipates-
in facet, but also facets relating it to categories, like aninstance-of facet. According to
the tagging ontology, every entity can be denoted by some other entity (an information
resource). When the denotation itself is used as a facet and combined with relations
available for information resources, entities can be tagged so that the meaning of the tag
relates to the information resource describing the entity.

Tagging is an intensional act, i.e., it involves a conceptualization of the tagger. In
particular, not every instance of the same symbol structureis used to denote the same
thing. Therefore, different taggers associate different concepts with tokens of a symbol
structure. For example, the tagbank can refer to many different entities, depending on
the background of the tagger. The domain and range restrictions of the relations used to
construct facets for tagged entities can also be used to clarify the different meanings of
tags depending on the tagger. For a full discussion of the tagontology, see [24].

While this forms a comprehensive core ontology for the tagging domain, most tag-
ging systems do not use all of them. For example, faceted tagging systems are rarely
employed, concepts are almost never used and the distinction between an entity and the
information resource that describes it is seldom explicated. However, this tagging ontol-
ogy provides a means for analyzing collaborative tagging systems. Even if only a frag-
ment of the ontology is used as the conceptual schema of a concrete implementation, the
ontology can be used to share information with other taggingsystems, if they employ a
similar schema.

A domain ontology like GFO-Bio can be used to configure the tagging software. In
particular, it can be used to generate the facets applicableto the tagged object, and the
properties of the tagged object. The domain ontology provides the knowledge about the
entities that play the role of the tagged object in the tagging relation.

11http://bioonto.de/pmwiki.php/Main/CollaborativeTaggingSystem



Figure 3. Comparison of our method with MDE. The four levels of abstraction in MDE are shown on the
left. The three main components of our method are situated on M1,the model level. We use OWL in M2 as
the meta-model. Model-driven architecture with UML is shown in the right. Both MDA and our method focus
primarily on the levels M0 to M2. The level M3, the meta-metamodel, can be filled by the Meta Object Facility
(MOF) [31] in both cases. This requires a MOF specification ofOWL.

6. Comparison with Model-Driven Software Development

A recent development in the area of software development is centered around the use and
development of models. Models are reusable artifacts and “provide a unique opportunity
to mitigate complexity, improve consumability, and reducetime to market” [27]. Model-
driven approaches such as Model-Driven Engineering (MDE) [28], Model-Driven Ar-
chitecture (MDA) [29] and Model-Driven Software Development (MDSD) [30] aim at
developing formal conceptual models for software and usingthem directly to generate
code for software applications. In MDE, software models arespecified using formal lan-
guages such as UML. A wide range of tools is available to support the generation of code
from these models.

The method we propose is similar to MDE in some aspects. Both in MDE and our
method, conceptual modelling plays a prominent role in the design and development of
software systems. These can be used in both cases to automatically generate code for the
designed applications. However, we use OWL as our meta-modelwhile MDE is often
carried out using UML. Therefore, using our method leads to semantically richer and
modular models.

Our method goes beyond the current state of the art in MDE. We consider the follow-
ing features the most outstanding advances over MDE: first, it provides an ontological
foundation of the conceptual and domain models and consistency verification; second, it
enforces a strict division between the conceptual and domain models; third, it allows for
intensional queries and consistency checks during runtime.

The resulting model consists of the three components illustrated in Figure 3. When
these models are formalized in a decidable fragment of OWL such as OWL-DL, auto-
mated reasoners can be employed to verify the model’s consistency. This can be per-



formed for each component of the model individually, establishing the consistency of
the top-level ontology, the conceptual model and the domainontology. When combining
the top-level ontology and the conceptual model or the top-level ontology and the do-
main ontology, inconsistencies can arise. These can be automatically detected and sub-
sequently eliminated. The detection of inconsistencies assures the consistent foundation
of both the conceptual model and the domain ontology in the top-level ontology. Finally,
the consistency of all three model components together withtheir foundations in the top-
level ontology is verified. As a result, the compatibility ofthe ontological commitments
of the conceptual model and the domain ontology is ensured.

The division between the conceptual model of the software and the model for the
domain to which the software is being applied leads to highlymodular software models
and thus to modular software systems. The conceptual model together with the top-level
ontology provides an interface for integrating domain models in the form of domain on-
tologies. Such ontologies are available for many domains. For use with our method, these
ontologies must be founded in the top-level ontology and be consistent with the con-
ceptual model. This allows reusing domain ontologies for developing software models.
Additionally, the part of the software model consisting of the conceptual model and the
top-level ontology can be used across multiple domains.

The last major advancement over model-driven approaches lies in the availability
of the software model during the runtime of the software. This can be used within the
software system to verify the consistency of instances withboth the conceptual model
and the domain ontology during runtime. This can be used to verify constraints on data
that is processed by the software. Furthermore, automated reasoners can be employed
by the software during runtime to perform intensional queries on the software system’s
model itself. As such, the software has access to the types, relations and constraints that
it can process. This could, for example, be used to implementsemantic web services that
automatically derive the types they accept as input or produce as output. These types can
depend either on the conceptual model of the service, on the top-level ontology, on the
domain ontology or a combination of these three components.

7. Discussion

The method we describe extends earlier work in formal ontologies in information sys-
tems [17] and applies it to software engineering. With the recent progress in Seman-
tic Web technology, it is now possible to apply the method we describe to large-scale
software development. To illustrate our method, we discussed the implementation of a
semantic wiki and a collaborative tagging system.

A main advantage of our method is the use of a domain ontology as a module in
a software model. This enables the construction of modular models that can be applied
across multiple domains while preserving comparability and consistency. Using Seman-
tic Web technology like description logic reasoners and OWL ontologies in the soft-
ware systems yields a means for verifying the model’s consistency and the ontological
adequacy of stored and processed data. The foundation in a top-level ontology like the
GFO [6] leads to ontologically well-founded models and makes the ontological com-
mitment of these models explicit. Together with automated description logic reasoners,
intensional queries both over the software’s conceptual model as well as the domain
ontology become possible.



There is a similarity between our method and Model-Driven Engineering [32]
(MDE): in both methods, the conceptual model and the model ofa domain play a cen-
tral role in the software development process. In model-driven engineering, however, the
conceptual model of a software system is used to generate code in various levels of de-
tail. In our method, the model can be used during runtime for verifying the integrity of
data and the internal state of the software. It is conceivable, however, that the software
model generated according to our method is used in a model-driven engineering process
to generate code. This code could then be generated in such a way that it automatically
includes an OWL reasoner in the software code, and apply the same model that was used
to generate the code for the verification of data during runtime.

When implementing software using the approach described here, the software must
employ a reasoner for many of its internal operations. Although the performance of rea-
soners capable of processing expressive languages like OWL-DL has improved in recent
years, reasoning remains a complex problem. In particular using a reasoner for applica-
tions that require high performance may currently be unfeasible.

8. Conclusion

We described a method for developing flexible, modular and consistent software mod-
els based on the interaction of three kinds of ontologies. The method reuses research in
ontological foundations of conceptual modelling. It is based on the use of ontologies as
conceptual models for software systems and the separation of the software’s conceptual
model from the model of a domain of application. We proposed to design software mod-
els in a way that enables using a domain ontology as a replaceable module. The interrela-
tions between the domain ontology and the software’s conceptual model are established
using a top-level ontology. This permits applying parts of the model across multiple do-
mains.

The method we described has been successfully applied to develop a semantic wiki
and a semantic collaborative tagging system. We showed how our approach compares
with model-driven engineering. In particular, we illustrated how our method exceeds
model-driven engineering with respect to domain-dependence and the verification of the
developed models both for consistency and ontological adequacy. Finally, we discuss
how to integrate our method with model-driven engineering.

Acknowledgements

We thank Janet Kelso for valuable comments on this paper.

References

[1] Herre, H., Heller, B.: Semantic foundations of medical information systems based on top-level ontolo-
gies. Knowledge-Based Systems19(2) (2006) 107–115

[2] Guizzardi, G.: Ontological Foundations for StructuralConceptual Models. Volume 015 of Telematica
Instituut Fundamental Research Series. Telematica Instituut (2005)



[3] Evermann, J., Wand, Y.: Towards ontologically based semantics for UML constructs. In: ER ’01:
Proceedings of the 20th International Conference on Conceptual Modeling, London, UK, Springer-
Verlag (2001) 354–367

[4] Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship construct in conceptual
modeling. ACM Trans. Database Syst.24(4) (1999) 494–528

[5] Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. International
Journal of Human-Computer Studies43(5-6) (1995) 907–928

[6] Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H.: General Formal Ontology
(GFO) – A foundational ontology integrating objects and processes [Version 1.0]. Onto-Med Report 8,
Research Group Ontologies in Medicine, Institute of Medical Informatics, Statistics and Epidemiology,
University of Leipzig, Leipzig (2006)

[7] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable D18: On-
tology library (final). Technical report, Laboratory for Applied Ontology – ISTC-CNR, Trento (Italy)
(2003)

[8] Herre, H., Loebe, F.: A meta-ontological architecture for foundational ontologies. In: On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. Springer Verlag (2005) 1398–1415

[9] Gracia, J.J.E.: Metaphysics and Its Task: The Search forthe Categorcal Foundation of Knowledge.
SUNY Series in Philosophy. SUNY Press (1999)

[10] Valente, A., Breuker, J.: Towards principled core ontologies. In Gaines, B.R., Musen, M.A., eds.:
Proceedings of the 10th Knowledge Acquisition Workshop (KAW’96), Banff, Alberta, Canada, Nov
9-14. (1996) 301–320

[11] Guarino, N.: The ontological level. In Casati, R., Smith, B., White, G., eds.: Philosophy and the
Cognitive Sciences. Hölder-Pichler-Tempsky, Vienna (1994)

[12] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing
the Semantic Web recommendations. Technical Report HPL-2003-146, Hewlett Packard, Bristol, UK
(2003)

[13] Horridge, M., Bechhofer, S., Noppens, O.: Igniting theowl 1.1 touch paper: The owl api. In: Proceedings
of OWLEd 2007: Third International Workshop on OWL Experiences and Directions. (2007)

[14] Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In Furbach, U.,
Shankar, N., eds.: Automated Reasoning: Proceedings of the Third International Joint Conference, IJ-
CAR 2006, Seattle, Washington, USA, Aug 17-20. Volume 4130 ofLecture Notes in Computer Science.,
Berlin, Springer (2006) 292–297

[15] Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In Haarslev, V., Möller, R., eds.: Proceedings of the
2004 International Workshop on Description Logics, DL2004, Whistler, British Columbia, Canada, Jun
6-8. Volume 104 of CEUR Workshop Proceedings., Aachen, Germany, CEUR-WS.org (2004) 212–213

[16] Guizzardi, G., Herre, H., Wagner, G.: Towards ontological foundations for UML conceptual models. In:
On the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated Inter-
national Conferences DOA, CoopIS and ODBASE 2002, London, UK, Springer-Verlag (2002) 1100–
1117

[17] Guarino, N.: Formal ontology and information systems. In Guarino, N., ed.: Proceedings of the 1st
International Conference on Formal Ontologies in Information Systems, FOIS’98, IOS Press (1998)
3–15

[18] Heller, B., Herre, H., Lippoldt, K.: Domain-specific concepts and ontological reduction within a data
dictionary framework. In: Data Integration in the Life Sciences. Springer Verlag (2004) 47–62

[19] McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language overview. W3C recommendation,
World Wide Web Consortium (W3C) (2004)

[20] Schorlemmer, M., Kalfoglou, Y.: On semantic interoperability and the flow of information (2003)
[21] Hoehndorf, R., Prüfer, K., Backhaus, M., Herre, H., Kelso, J., Loebe, F., Visagie, J.: A proposal for a

gene functions wiki. In Meersman, R., Tari, Z., Herrero, P., eds.: Proceedings of OTM 2006 Workshops,
Montpellier, France, Oct 29 - Nov 3, Part I, Workshop Knowledge Systems in Bioinformatics, KSinBIT
2006. Volume 4277 of Lecture Notes in Computer Science., Berlin, Springer (2006) 669–678

[22] Loebe, F.: Abstract vs. social roles – Towards a generaltheoretical account of roles. Applied Ontology
2(2) (2007) 127–158

[23] Hoehndorf, R., Loebe, F., Poli, R., Herre, H., Kelso, J.: GFO-Bio: A biological core ontology. Applied
Ontology (2008) forthcoming.

[24] Uciteli, A.: Ontologien und kollaborative Taggingsysteme. Master’s thesis, Department of Computer



Science, University of Leipzig (2008) forthcoming.
[25] Newman, R.: Tag ontology design. http://www.holygoat.co.uk/projects/tags/ (2005) Last accessed: Nov

20, 2007.
[26] Pepper, S., Schwab, S.: Curing the web’s identity crisis: Subject indicators for rdf. In: Proceedings of

the XML conference 2003. (2003)
[27] Larsen, G.: Model-driven development: Assets and reuse. IBM Systems Journal45(03) (2006) 541 –

554
[28] Bézivin, J.: On the unification power of models. Softwareand Systems Modeling4(2) (2005) 171–188
[29] Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Architecture.

Addison-Wesley, Boston (2004)
[30] Stahl, T., Voelter, M.: Model-Driven Software Development. John Wiley & Sons, Ltd (2006)
[31] Object Management Group: Omg’s metaobject facility. http://www.omg.org/mof/ (2008)
[32] Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer39(2) (2006) 25–31


