A situation example

This example is due to John Perry perry1. The dog Jackie has a broken leg. There is an x-ray taken of Jackie, and this x-ray has a certain pattern, indicating that Jackie has a broken leg.

There are two types of situations of concern. The first is one with an x-ray, $ x$, at a time $t$, that has a certain pattern $ \Phi$. This pattern is the pattern of a broken leg.

$\displaystyle T=[s\vert s\models \langle\langle$   X-ray$\displaystyle ,x,t;1 \rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,x,t;1\rangle\rangle ]
$

The second type is one with the x-ray $ x$ of some object $ y$ and this object has a broken leg, all at a certain time.

$\displaystyle T'=[s\vert s\models \langle\langle$   Is-xray-of$\displaystyle ,x,y,t;1\rangle\rangle \land \langle\langle$   Has-broken-leg$\displaystyle ,y,t;1\rangle\rangle
$

Our constraint will now state the following: If there is an x-ray $ x$ and it has a certain pattern $ \Phi$, the pattern of a broken leg, then it is an x-ray of some object $ y$ and this object has a broken leg.

$\displaystyle C=\langle\langle$   Involves$\displaystyle ,T,T';1\rangle\rangle
$

We define a universal $ u_s$, the universal of situations with an x-ray of a broken leg, in the following way:

$\displaystyle u_s=(\Sigma,T_s)$      
$\displaystyle \Sigma=(\models)$      
$\displaystyle T_s=[s\vert s \models$   X-ray$\displaystyle ,x,t;1\rangle\rangle \land s \models \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,x,t;1\rangle\rangle$      

The situation $s$ is then defined as follows, where $a$ is the x-ray and $ t'$ the time the x-ray has been taken.

$\displaystyle s::u_s$      
$\displaystyle s \models \langle\langle$   X-ray$\displaystyle ,a,t';1\rangle\rangle$      
$\displaystyle s \models \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,a,t';1\rangle\rangle$      
$\displaystyle s \models C$      

Now $f$ is an anchor defined on $ x$ and $t$, such that $ f(x)=a$ and $ f(t)=t'$. Now we obtain

    $\displaystyle s \models \phi$  
$\displaystyle \phi$ $\displaystyle =$ $\displaystyle \langle\langle$   X-ray$\displaystyle ,a,t';1\rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,a,t';1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle \langle\langle$   X-ray$\displaystyle ,f(x),f(t);1\rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,f(x),f(t);1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle (\langle\langle$   X-ray$\displaystyle ,x,t;1 \rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,x,t;1\rangle\rangle )[f]$  
  $\displaystyle =$ $\displaystyle cond(T)[f]$  

Then $ P$ is the following proposition:

    $\displaystyle \exists s'(s' \models \exists y(\langle\langle$   Is-xray-of$\displaystyle ,x,y,t;1\rangle\rangle \land \langle\langle$   Has-broken-leg$\displaystyle ,y,t;1\rangle\rangle )[f])$  
  $\displaystyle =$ $\displaystyle \exists s'(s' \models \exists y(\langle\langle$   Is-xray-of$\displaystyle ,f(x),y,f(t);1\rangle\rangle
\land \langle\langle$   Has-broken-leg$\displaystyle ,y,f(t);1\rangle\rangle ))$  
  $\displaystyle =$ $\displaystyle \exists s'(s' \models \exists y(\langle\langle$   Is-xray-of$\displaystyle ,a,y,t';1\rangle\rangle \land \langle\langle$   Has-broken-leg$\displaystyle ,y,t';1\rangle\rangle ))$  

This proposition is the pure information carried by the situation $s$, namely the proposition, that in some situation $ s'$ there has to be a dog $ y$, and $a$ is the x-ray of $ y$ at time $ t'$.

Let us now see what we will obtain using the second type of constraint. Let the type $T$ be the same as before, $ T'=[s\vert s\models \langle\langle$   Has-broken-leg$ ,y,t;1\rangle\rangle ]$ and $ T''=[s\vert s\models \langle\langle$   Is-xray-of$ ,x,y,t;1\rangle\rangle ]$, and $ C'=\langle\langle Involves_R,T,T',T'';1\rangle\rangle $.

The universal $ u_s$ is the same as above.

We could state that the described situation is the instance of another universal, a universal of situations with an x-ray of a broken leg of some person. Or we could define an additional universal and say that this situation is also an instance of another universal, the universal of situations with an x-ray of an individual. Again for the sake of simplicity we omit this.

The situation $ s_R$ is then defined as follows, where $a$ and $ t'$ are as before, and $b$ is assigned to the dog Jackie.

$\displaystyle s::u_{sR}$      
$\displaystyle s \models \langle\langle$   X-ray$\displaystyle ,a,t';1\rangle\rangle$      
$\displaystyle s \models \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,a,t';1\rangle\rangle$      
$\displaystyle s \models \langle\langle$   Is-xray-of$\displaystyle ,a,b,t';1\rangle\rangle$      
$\displaystyle s \models \langle\langle Involves_R,T,T',T'';1\rangle\rangle$      

Now $f$ is an anchor defined on $ x$ and $t$ as well as $ y$, with $ f(x)=a$, $ f(t)=t'$ and $ f(y)=b$, $f$ has to assign $ y$ to the dog Jackie, $b$.

Now we obtain the following.

$\displaystyle \phi$ $\displaystyle =$ $\displaystyle \langle\langle$   X-ray$\displaystyle ,a,t';1\rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,a,t';1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle \langle\langle$   X-ray$\displaystyle ,f(x),f(t);1\rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,f(x),f(t);1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle \langle\langle ($X-ray$\displaystyle ,x,t;1 \rangle\rangle \land \langle\langle$   $\displaystyle \mbox{Has-pattern-$\Phi$}$$\displaystyle ,x,t;1\rangle\rangle )[f]$  
  $\displaystyle =$ $\displaystyle cond(T)[f]$  
$\displaystyle \phi'$ $\displaystyle =$ $\displaystyle \langle\langle$   Is-xray-of$\displaystyle ,a,b,t';1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle \langle\langle$   Is-xray-of$\displaystyle ,f(x),f(y),f(t);1\rangle\rangle$  
  $\displaystyle =$ $\displaystyle (\langle\langle$   Is-xray-of$\displaystyle ,x,y,t;1\rangle\rangle )[f]$  
  $\displaystyle =$ $\displaystyle cond(T'')[f]$  

Now we will obtain the proposition

$\displaystyle \exists s''(s'' \models \langle\langle$   Has-broken-leg$\displaystyle ,b,t';1\rangle\rangle )$    

This is the information we wanted to obtain out of the described situation.

leechuck 2005-04-19